Products
产品中心
产品中心
基于物联网技术的智能电力抄表服务平台
更新时间:2022-09-27点击次数:571次
基于物联网技术的智能电力抄表服务平台
任运业
(江苏安科瑞微电网研究院有限公司,江苏江阴)
摘要:随着科学技术的发展,我国的物联网技术有了很大进展。为了提升电力抄表服务的稳定性,保障电力抄表数据的可靠性,本文提出并实现了基于物联网的智能电力抄表服务平台,结合云计算、大数据等技术,提供电力集抄、能耗管理、电气安全、预付费、智能运维等多种数据服务,实现监控、告警、运维的信息化、自动化和智能化。
关键词:能源物联网;APP电表;数据服务
一、引言
随着智能电网技术和物联网技术的发展,使用2G/4G/NB-IOT网络进行电网抄表数据传输业务发展迅速。由于电网抄表终端分布区域广,经常出现因终端断电、终端异常、网络弱覆盖等问题,导致远程电力抄表设备无法正常传输数据,影响抄表数据及时回传[1-3]。为了提升电力抄表服务的稳定性,保障电力抄表数据的可靠性,本文设计并实现一种基于物联网的智能电力抄表服务平台,运用大数据和云计算技术,建立上下行数据标准,提供电力集抄、能耗管理、电气安全、预付费、智能运维、智能照明等多种数据服务,实现监控、告警、运维的信息化、自动化和智能化。
二、关键技术
2.1物联网技术
物联网(internet of things,IoT)技术作为嵌入式技术、网络技术和软件技术的交叉领域,被定义为利用红外线传感器、射频识别、GPS等通信技术按照一定协现智能交互的网络[3]。
一般认为物联网结构可分为感知层、网络层与应用层3个层次:感知层主要包括计量传感设备;网络层包括网络的协议栈及其软硬件实现;应用层包括集中式或分布式的云计算平台以及用户应用软件等,是“物"与用户直接进行交互的部分。
物联网通信协议分为接入协议和传输协议。接入协议主要指底层感知层设备间进行通信的协议。传输协议基于互联网的TCP/IP协议,面向应用层进行数据交换,常见的物联网传输协议为MQTT协议。MQTT采用“推送"机制,减轻服务器短时并发接收数据请求的负担,提供3种服务质量,能在资源受限的网络中实现设备同远方系统进行异步通信,本文采用的协议就是这个。
2.2 MQTT协议
MQTT(消息队列远程传输协议)由IBM在1999年发布,该协议构建于TCP/IP协议上,一种基于发布/订阅(publish/subscribe)模式的"轻量级"通讯协议,。MQTT的优点是能够以很少的代码和有限的带宽为远程连接设备提供实时可靠的消息服务作为低开销、低带宽占用的即时通信协议使其在物联网、小型设备、移动应用程序等广泛的应用。MQTT是基于客户端-服务器的消息传递/订阅传输协议。QTT协议实现轻巧、简单、开放、容易,这些特点使其适用范围非常广泛。
MQTT协议提供一对多的消息发布,可以降低应用程序的耦合性,用户只需要编写很少量的应用代码就能完成一对多的消息发布与订阅,该协议是基于<客户端-服务器>模型,在协议中主要有三种身份:发布者(Publisher)、服务器(Broker)以及订阅者(Subscriber)。其中,MQTT消息的发行者和订阅者是客户端服务器作为中继的存在,只是将发布者发出的消息转发给订阅该主题的所有订阅者,发布者可以发布该权限内的所有主题,消息发布者同时是订阅者,实现生产者和消费者的解耦所发出的消息可以同时被多个订阅者预订。
三、系统整体方案设计
能源物联网以能源供应、能源管理、设备管理、能耗分析的能源流向为主线,将能源生产加工、分配传输、消耗、节能各个环节串联起来,结合人与物的互联,构成以安科瑞产品为媒介的能源物联网生态圈,其中物联网硬件和能源参与者分别以数据流形式和业务流的形式与平台交互。
3.1组网结构
Acrel-EIoT能源物联网云平台采用分层分布式结构,主要由感知层(终端采集设备)、网络层(通讯管理终端)和平台层(能源物联网云平台)三个部分组成。
● 感知层:连接于网络中的各类传感器,包括多功能仪表、预付费电表、多回路仪表、物联网电表、物联网水表、电瓶车充电桩、汽车充电桩、路灯控制器等。
● 网络层:智能网关,采集感知层的数据,进行规约转换及存储之后将数据上传至能源物联网云平台。
● 平台层:包含应用服务器和数据服务器,可在PC端或移动端实现应用。
3.2平台架构
Acrel-EIoT能源物联网云平台的系统网络结构采用分层分布式的结构,系统包括:感知层、数据层、应用层、表现层和运营层。系统架构图如图所示。
传感器层包括了我司的各类产品,是整个系统的最底层,也是构建该能源物联网云平台必要的基本组成元素,主要有多功能仪表、预付费电表、多回路仪表、物联网电表、物联网水表、电瓶车充电桩、汽车充电桩、路灯控制器等设备。
中间的数据处理平台主要完成数据处理、数据存储和数据交互的工作,为了保证整个综合平台的数据处理能力,我们将实时数据、历史数据和业务数据分别存储在不同的库中,并提供多种接口实现与第三方系统的数据交互。
上层的应用层是指Acrel-EIoT能源物联网云平台,主要实现各种功能应用,平台按照能源的流向分为能源供应、能源管理、设备管理和能耗分析4大板块,其中能源供应包括电力集抄、智能运维子模块,能源管理包括安全用电、电能质量子模块,设备管理包括智能照明、预付费、充电桩子模块,能耗分析包括能源管理、增值服务子模块。平台通过web和app的方式为用户提供人机交互的界面,运营层的各类用户可以通过这两种方式实现平台的访问与操作。
四、平台功能
4.1、能源供应
4.1.1 电力集抄功能模块
随着信息网络技术的不断发展,各类规模大小不等,设备种类、数量不同的含网络设备机房广泛分布于用户各分支机构所在地域,由于欠缺与运行网络的规模体系相对称的监控系统,数量众多的无人值守机房的物理运行环境状况、设备运行状况、人员活动状况以及消防状况的变化包括可能出现的危急状况,均无法得到及时的发现和处理,也就很难被有效预见、防范和避免。因此在配电室内安装环境监控系统,实现配电室内环境的在线监测,保障配电室设备的稳定运行很有必要。
电力集抄模块可以实现对各种监测数据的查询、分析、预警及综合展示,以保证配电室的环境友好。在智能化方面实现供配电监控系统的遥测、遥信、遥控控制,对系统进行综合检测和统一管理;在数据资源管理方面,可以显示或查询供配电室内各设备运行(包括历史和实时参数),并根据实际情况进行日报、月报和年报查询或打印,提高工作效率,节约人力资源。
4.1.2 智能运维功能模块
据统计全国高供高计的工商业用户数量达到200多万户,规模巨大,但是大部分日常的运行维护工作比较传统,普遍存在人力成本高、工作效率低、故障抢修时间长、风险预防薄弱等问题。国网公司和众多电力运维公司正在抢占这块巨大的市场,这是一个千亿级别的市场。
智能运维模块采用多功能电力仪表、无线通信、边缘计算网关及大数据分析技术,通过智能网关采集现场数据并存储在本地,再定时向云平台推送数据。平台可同时接入数以千计的用户变电站数据。平台采集的数据包括变电所电气参数和环境数据,包括电流电压功率、开关状态、变压器温度、环境温湿度、浸水、烟雾、视频、门禁等信息,有异常发生10S内通过短信和APP发出告警信号。平台通过手机APP下发运维任务到人员手机上,并通过GPS跟踪运维执行过程进行闭环,提高运维效率,即时发现运行缺陷并做消缺处理。
4.2、能源管理
4.2.1 安全用电功能模块
据应急管理部网站数据,2016~2018年期间因为电气原因导致的火灾占总数的30%~34%左右,其中2018年全国共接报火灾23.7万起,因违反电气安装使用规定引发的火灾占总数的34.6%,较大和重大火灾事故中,电气火灾的比例更高。国务院、公安部消防局以及各省市自治区直辖市纷纷出台文件推广使用智慧用电,从源头上预防电气火灾的发生,现安全用电管理平台已在九小场所、三合一场所、养老福利院、医疗场所、学校、金融网点等人员密集场所广泛开展。
安全用电管理模块对电气引发火灾的主要因素(线缆温度、漏电电流、负荷电流、电压)进行不间断的数据跟踪与统计分析,通过2G/NB-IOT/4G方式采集现场数据,实时发现电气线路和用电设备存在的安全隐患(如:线缆温度异常、过载、过压、欠压及漏电等)并通过短信、APP推送、自动语音呼叫等方式及时预警,有效防止电气火灾的发生。系统可以显示所有监测点位的漏电电流等电气参数和线缆温度,并支持巡检记录和派单操作,提供安全隐患分析报告,实时评估企业用电安全状态。
4.2.2 电能质量功能模块
电能质量问题越来越受到关注,已成为电力系统的研究热点之一。一方面,随着科学技术的发展,各种精密复杂用电设备的广泛应用,这些设备很大部分对电能质量非常敏感;另一方面,电力系统规模的不断扩大和用电需求的快速增加,导致电能质量变的非常不稳定。对电能质量分析的主要目的是确定电能信号扰动的类型和范围,并对相应的扰动源进行有效的调节和补偿。因此,改善和提高电能质量的关键在于及时、准确地获取各种扰动信号源的信息。
电能质量监测,包括三项不平衡度、谐波、功率因数,以矢量图的形式展示三相不平衡度。三项不平衡或功率因数过低时产生报警,触发APP、手机短信、邮件、钉钉、语音等多种方式提醒。
4.3、设备管理
4.3.1 智能照明功能模块
随着人们生活水平的不断提高,人们对工作和生活环境的要求越来越高,同时对照明系统的要求也越来越高。照明领域的能源消耗在总的能源消耗中占了相当大的比例,节约能源和提高照明质量是当务之急。照明用电作为电力消耗的重要部分,已经占到了电力消耗的10%左右,并随着我国国民经济的迅猛发展和人民生活水平的不断提高,照明用电还将不断增加。
智能照明通过物联网技术对安装在城市各区域照明回路的用电状态进行不间断地数据监测。平台通过监测照明线路的电流和电压值来判断灯具的工作情况,任何不正常的工作状态,平台都能进行监测,预警和报警,预警和报警信息通过手机APP推送,短信,语音外呼、邮件、微信小程序、微信公众号、钉钉等,快速到达责任人的身边,提醒运行人员接触器跳闸,电源失压等等。
4.3.2 预付费水电功能模块
预付费水电功能可以针对各商业综合体、小区、写字楼、办公楼、酒店式公寓等物业,学校、工厂宿舍的后勤管理部门以及连锁超市、大型物业分布式财务操作,在线支付,总部财务扎口等。目前预付费水电已经成功在上述各场景得到广泛的应用并已经稳定运行多年,适用于物业公司对小区、办公和商铺租户的水电预付费管理,或者学校对学生宿舍的用电预付费和用电安全管控系统。
4.3.3 汽车/电瓶车收费运营功能模块
电动汽车现已成为广泛使用的绿色能源交通工具,同时电动自行车数量越来越多,解决了老百姓短距离出行问题,但是和电动自行车相关的安全和火灾事故新闻也屡见不鲜,有逐年增长的趋势,给社会带来了很大的损失,成为人民生命和财产安全的一个隐患。基于电动自行车火灾的危害和特点,各级政府部门发文对电动自行车火灾的整治对象都放在规范停放和充电行为上。汽车/电瓶车收费运营功能模块通过物联网技术对接入系统的充电桩站点和各个充电桩进行不间断地数据采集和监控,同时对各类故障如充电机过温保护、充电机输入输出过压、欠压、绝缘检测故障等一系列故障进行预警;用户通过微信小程序扫描二维码,进行支付后,系统发起充电请求,控制二维码对应的充电桩完成电动汽车的充电过程。充电桩可选配WIFI模块或GPRS模块接入互联网,配合加密技术和秘钥分发技术,基于TCP/IP的数据交互协议,与云端进行直连。
该功能模块为汽车/电瓶车充电桩客户提供充电安全管理、资产管理和交易管理的一揽子解决方案,解决充电难、管理难和收费难的问题,可应用于商业楼宇、小区、学校、医院等场所设置的电动自行车充电场所的运营管理。
4.4、能源分析
4.4.1 能源管理功能模块
为了稳步推进双碳目标,在能源消费强度和消费总量的“双控"背景下,企业需要考虑如何应对能耗双控以保障正常生产。现有大部分企业依然采用电、水、气、冷、热等各种能源供应系统“单独规划、单独设计、独立运行"的模式。普遍存在计量检测到配备不足;计量设备计量精度不高、计量数据不准确;人工抄表可靠性低;难以有效监测和评估主要耗能设备的用能效率;缺少决策数据支持,对于节能评估无法提供可靠参考数据;缺乏有效的企业能效评估指标体系,能耗管理措施难以落地等情况。
能源管理模块采用自动化、信息化技术,实现从能源数据采集、过程监控、能源介质消耗分析、能耗管理等全过程的自动化、科学化管理,使能源管理、能源生产以及使用的全过程有机结合起来,运用先进的数据处理与分析技术,进行离线生产分析与管理,实现全厂能源系统的统一调度,优化能源介质平衡、有效利用能源,提高能源质量、降低能源消耗,达到节能降耗和提升整体能源管理水平的目的。
4.4.2 增值服务功能模块
(1)工业组态
传统的工业自动化组态应用开发方式要求开发人员具备代码编写的能力、理解相关的开发框架的概念和使用方式,这种开发方式开发周期长、对开发人员要求非常高。同时,传统的工业自动化组态应用部署在工业现场,部署便捷性和可访问性都很低。
伴随着工业互联网的快速发展,应用需求往往更新迭代非常快,而设备厂商往往没有相关的工业组态软件开发背景,使得工业组态软件的开发和更新速度非常缓慢,往往无法满足快速业务增长的需要。同时,对于工业组态软件的访问不再止于工业现场,来自于工业现场外部的访问需求也在日益增长。
Acrel-EIoT能源物联网云平台中的工业组态模块解决了传统工业自动化组态应用的部署和可访问性低的问题,通过用户在开发工具中使用鼠标拖拽的方式调整组态画面元件的属性、位置、尺寸等,并内置丰富的组态元件库,使得用户无需代码的编写能力,无需工业自动化组态软件开发的技术背景,也可以方便的开发出工业组态界面,同时也支持数据展示、远程控制等功能。
(2)3D可视化
3D可视化技术通过虚拟仿真实现多维度可视化,为客户提供数字化服务,助力企业能源经济双向管理,提升能源管理水平。可以实现的功能主要有:各区域信息实时同步;全局掌握各区域能源消耗情况;可视化监视设备运行状态;智能巡检,自动分析巡检路径上的设备运行、电能质量、电气安全、用能异常等情况,并记录巡检结果。
五、总结
随着4G广泛应用,5G快速推进,以NB-IoT等为代表的新一代物联网技术顺势而生。当前,物与物连接规模急剧扩张,连接应用日新月异,物联网技术可以说已深度嵌入多个垂直行业。但物联网终端往往分布较为分散,不仅安装环境复杂,而且网络信号往往难以得到保障,物联网业务日常管理和异常问题排查及其困难。本文设计并实现一种基于物联网的智能电力抄表服务平台,运用大数据和云计算技术,建立上下行数据标准,提供电力集抄、能耗管理、电气安全、预付费、智能运维、智能照明等多种数据服务,提升了电力抄表服务的稳定性,保障了电力抄表数据的可靠性,实现监控、告警、运维的信息化、自动化和智能化。
参考文献
[1] 江潮洪.物联网技术在电网的应用[J].电子世界,2018(21):133-134.
[2] 姜鹏,王雅静,蔡富东.基于大数据分析的电力移动物联网信息安全终端架构[J].电工电气,2017(01):63-66.
[3] 陈淘,刘利兵.大数据技术在智能电网中应用[J].物联网技术,2016,6(04):54-55+57.
[4] 刘俊勇,潘力,何迈.能源物联网及其关键技术[J].物联网学报