产品中心
浅谈光伏储能发电系统及能量管理策略研究
任运业
安科瑞电气股份有限公司 上海嘉定 201801
摘要:本研究旨在探讨光伏储能发电系统的性能优化和能量管理策略的发展。随着可再生能源的需求不断增加,光伏储能系统作为一种具有巨大潜力的能源解决方案备受瞩目。然而,有效的能量管理策略是实现光伏储能系统能效运行的关键。本文通过综合性的实验和模拟研究,深入分析了不同能量管理策略的性能,并评估了它们对系统效率和环境可持续性的影响。
关键词:光伏储能系统;太阳能发电;能量管理策略;储能技术;预测性能分析
0引言
光伏储能发电系统的实质是光与电能的转化以及后续的电能储存,当电力需求出现时,实现持续供应。在可以预见的前景中,光伏储能发电系统因为其独te的能源利用模式,被普遍视为一种具备潜力的技术解
决方案,且由于对可再生能源和环境保护的需求日益强烈,进一步加强了对其的研究和关注。
在传统能源系统中,化石燃料扮演了主要角色,然而煤炭和石油等既有数量极限的困扰,也经常因为市场行为而出现价格波动,更糟糕的是,其在燃烧状态下会繁殖严重的环境污染,并加剧温室效应。而光伏储能发电系统避开了这些问题,其直接利用太阳能,无需在环境中增加无谓的污染,也无需填补空事的排
放。得益于此,光伏储能发电系统在实现能源的持续性和减缓碳排放方面,占据了关键的地位。
但是,尽管光伏储能发电系统当中有着很大的作用。是能够优化能源的使用和分配,在程度之上提升高系统的效率,所以说,对于广泛储能发电系统和能量管理策略进行研究具备着重要工程
1光伏储能系统的基础
1.1光伏发电技术概述
光伏发电技术是一种将太阳辐射能转化为电能的过程。它基于光伏效应,这是一种物理现象,根据这一现象,某些材料*受到光照射时会产生电流。光伏电池通常由半导体材料制成,*常见的是硅。当光子(太阳光)碰撞到光伏电池的半导体表面时,它们激发了电子,使其从材料中释放出来,从而形成电流。这产生的直流电流可以被用来为电网供电或储存*电池中以备将来使用。
1.2储能技术介绍
储能技术是光伏储能系统的关键组成部分,它允许将通过光伏发电产生的电能储存*电池或其他储能设备中,以便*晚上或云天等不可控的时段供电。常见的储能技术包括:
锂离子电池:这是目前*常用的储能技术之一,用于存储电能,供应家庭、工业和商业用途。
铅酸电池:被广泛应用于低成本和短期应用中。超级电容器:具有高速充放电能力,通常用于瞬态储能需求。
氢能源储能:通过将电能用于制氢,将氢储存*燃料电池中,以供电时重新产生电能。
热能储能:利用热能储存原理,例如蓄热式太阳能电站。
1.3光伏储能系统的工作原理
光伏发电:光伏电池*阳光照射下产生直流电。这一过程是系统的电力输入。
电能转换:直流电经过逆变器转换为交流电,以便*电网中使用或供给交流设备。
电能储存:剩余的电能可以储存*电池或其他储能设备中,以备将来使用。这是系统的能量存储部分。
能量管理:系统的能量管理控制器监控能源需求、电池状态和其他参数,并根据需要分配电能。它确保*不可预测的太阳能供应条件下,系统能够提供连续可靠的电力供应。
电网互连:如果系统与电网互连,多余的电能可以卖给电网,从而实现双向电流。这有助于提高系统的经济性和可持续性
2能量管理策略
2.1能量管理策略的定义和重要性
能量管理策略是指*能源系统中有效地控制和分配电能的一套方法和规划。它的目的是*大程度地提高能源系统的效率、可靠性和可持续性。能量管理策略*光伏发电和储能系统中尤为重要,因为这些系统受到日照变化等不可控因素的影响,需要控制和协调,以确保可靠供电、*大限度地减少浪费并实现经济效益。
2.2基于光伏发电和储能的典型能量管理策略
优先选择光伏发电以满足负载需求,这就少了向电网购买电能的必要。余下的电力,可以储存起来以备不时之需。此外,精细管理充电和放电电流,这关乎电池的使用寿命和效率,可能用到如深度循环充电和浮动充电等策略。储能系统同样可以作为备用电源,应对电网故障或断电情况。当电网出现问题,系统自动转为储能供电。缩减高峰时段的负载需求,比方说通过调节照明、制冷和供暖系统来节约能耗。如果条件允许,把剩余电力卖回电网也是获得经济利益的方法。这需要合适的电网互连安装和政策支持。
2.3基于实时数据和预测的能量管理方法
能源系统通过实时监控各个组件的状态和性能,以及负载需求,可以更好地协调能量的生产和分配。其次,使用气象数据和太阳辐射模型,可以预测太阳能发电的预期产量。这有助于系统决策,如何*佳地分配电能。同时,基于历史数据和负载需求的模型,可以预测未来几小时或几天内的负载需求。这有助于系统规划,以满足未来需求。*后,通过分析组件的性能数据,可以预测何时需要维护光伏电池和储能系统,以确保其长期性能和可靠性。能量管理策略是确保光伏发电和储能系统*效运行的关键。它结合了实时数据监控和预测技术,以优化能源的生产、储存和分配,提高系统的经济性和可持续性。这些策略*未来的能源系统中将发挥越来越重要的作用,特别是*面临能源可持续性和可再生能源集成的挑战时。
3光伏储能系统的性能分析
光伏储能系统的性能分析是确保系统*效运行和不断优化的关键部分。下面是关于光伏系统和储能系统性能参数的测量、评估以及这些参数与能量管理策略的关联的信息:
3.1光伏系统性能参数的测量和评估
太阳能发电效率(SolarPVEfficiency)是衡量太阳能板把太阳能变成电能成功率的工具。这通过百分比看,效率越高,太阳能转化成电力的数量越多。
光伏系统每天制造电力的量,我们称之为日均发电量(DailyEnergyProduction)。以千瓦时(kWh)来计算,衡量这个就是通过查看系统的输出。
系统可用性(SystemAvailability),绘画出系统*既定运行时段里的可运行性。如果系统可用性强,就能保证能源系统的稳健运行。
3.2储能系统性能参数的测量和评估
循环寿命(CycleLife):这是电池的寿命,表示电池可以进行多少次充电和放电循环而不降低性能。循环寿命通常与深度循环充电有关。
往返效率(Round-TripEfficiency):这是储能系统*电能存储和释放过程中的能量损耗的度量,通常以百分比表示。*效的储能系统具有更高的往返效率。
容量(Capacity):容量表示储能系统可以存储的电能总量,通常以千瓦时(kWh)表示。
3.3性能参数与能量管理策略的关联
太阳能发电效率与自消耗策略:*效的光伏系统有更多的电能可用于自消耗,降低对电网的依赖。
日均发电量与负载管理策略:每日发电量的了解可以帮助决定何时执行负载移位,以*大程度地利用自发电能。
储能系统循环寿命与储能优化策略:长寿命电池可以更频繁地充电和放电,从而更好地支持储能系统的优化。
往返效率与备用电源策略:*效的储能系统能够*备用电源需求时提供更多的电能。
性能参数的测量和评估可以帮助操作员优化系统性能,确保*效能源产生和使用。这些参数也可用于监测系统的健康状况,提前发现可能的问题,以提高系统的可靠性和可维护性。能量管理策略应该基于这些性能参数的实际测量数据,以便根据实际情况对系统进行调整和优化。
4环境影响和可持续性
光伏储能系统对环境的影响以及可持续性考虑和减少环境影响的方法是非常重要的主题。以下是有关这些方面的详细信息:
4.1环境影响
向光伏储能系统的价值致敬,此系统能巧妙地将太阳光转化为电力,这一切都来自于有效利用太阳能电池板。太阳能电池板绝非偶然,其主要材料硅,借助光子,从硅元素中释放电子,生成电流。这一过程纯粹属于物理现象,燃烧或化学反应并不参与,也就没有温室气体如二氧化碳的生成。光伏储能系统,独zhan鳌头,能替代短视的传统能源:煤炭,天然气和石油。传统能源的燃烧会释放大量温室气体,比如大气中的二氧化碳,这些气体是全球气候变暖的始作俑者,加重气候变化。通过减少碳足迹,可以降低气候变化对生态系统和人类社会的负面影响。减少CO2排放不仅有助于应对气候变化,还有助于全球环境的保护。光伏储能系统*世界各地的部署都有助于减少污染、改善空气质量,并保护生态系统的完整性。太阳能是可再生能源,太阳不会停止辐射能量。因此,光伏储能系统可以实现长期的能源可持续性,而不会耗尽自然资源。光伏储能系统的碳排放减少效应是应对气候变化和全球变暖的重要措施之一。它不仅减少了对化石燃料的依赖,还有助于改善环境质量,保护生态系统,并为可持续未来提供了一个清洁能源解决方案。
土地使用:光伏电池板需要一定的土地面积来安装,但相比于传统发电方式,其土地占用较小。这可减少土地开发的负面影响。光伏电池板是太阳能发电的关键组成部分,通常安装*平台上或太阳能支架上。虽然需要一定面积来容纳这些太阳能电池板,但相比传统能源发电方式,光伏电池板的土地占用面积要小得多。传统的火力发电厂或核能发电厂需要大片土地,包括燃料储存、冷却设施和废物处理设施。相比之下,太阳能电池板可以*各种地形和地理条件下部署,可以*屋顶、沙漠、废弃土地等不同场所使用。
小面积土地受用,对自然生态系统的介入可控。常规发电手段常常涉及原生土地的开采,环境问题难免,如树林减少、野生生物家园遭破坏、水源被污染等。光伏电池板与自然环境相结合,对野生生物与植被的影响可以控制*较小范围内,生态多样性得以保护。传统能源项目,石矿、石油开采等,会对地下水
及土壤产生负面影响。太阳能电池板则无需开采地下资源,土地污染的风险较低,有助于保护地下水质与土壤的完好。建筑物的屋顶和立面,可作为太阳能电池板的安置之地,土地使用至少。这种城市化的集成方式可以提升能源利用效率,减小对城市绿化区和农田的占用,有助于保持城市生态平衡。光伏电池板占地面积小,这是其重要的环保优势。减低了土地开发对自然环境及生态系统的影响,同时提供了清洁可再生的能源,满足增长的能源需求。太阳能发电成为一种重要的可续能源发展手段,为地球生态平衡的保护贡献实力。
光伏系统不需大量水资源来冷却,与煤炭或核能发电方式大相径庭,因此,水资源的使用和水质污染的风险都得到有效降低。
废弃物处理:光伏电池板的制造和处理可能会产生废弃物和有害物质。回收和处理废弃的太阳能电池板是一个重要的环保挑战。
4.2持续性考虑和减少环境影响的方法
借助环保和可再生材料制作的太阳能电池板降低了制造过程中的资源消耗以及废弃物的产出。提升电池板的效率,无疑缩小了占地面积,减轻了对土地的压力。系统性能的提升也能对资源实施更合理的分配。时刻考虑全生命周期分析,可以掌握光伏储能系统的环境影响,包括制造、运营到废弃处理。
利用智能能源管理系统,一方面可以优化能源配置,另一方面也可以减少能源的浪费,从而降低碳排放。推动可再生能源项目,比如光伏储能系统,如果能得到金融激励和政策的支持,可持续能源的推广就能得到加速。而对光伏储能系统来说,建设和维护也需要社会责任心的支持,像对当地社区的援助和环保活动的参与。结果很重要,但过程也同样重要,提高大众对太阳能以及可持续能源的了解,这样才能有更多的人愿意参与和支持环保活动。
5系统概述
5.1概述
Acrel-2000MG微电网能量管理系统,是我司根据新型电力系统下微电网监控系统与微电网能量管理系统的要求,总结国内外的研究和生产的经验,专门研制出的企业微电网能量管理系统。本系统满足光伏系统、风力发电、储能系统以及充电桩的接入,全天候进行数据采集分析,直接监视光伏、风能、储能系统、充电桩运行状态及健康状况,是一个集监控系统、能量管理为一体的管理系统。该系统*安全稳定的基础上以经济优化运行为目标,提升可再生能源应用,提高电网运行稳定性、补偿负荷波动;有效实现用户侧的需求管理、消除昼夜峰谷差、平滑负荷,提高电力设备运行效率、降低供电成本。为企业微电网能量管理提供安全、可靠、经济运行提供了全新的解决方案。
微电网能量管理系统应采用分层分布式结构,整个能量管理系统*物理上分为三个层:设备层、网络通信层和站控层。站级通信网络采用标准以太网及TCP/IP通信协议,物理媒介可以为光纤、网线、屏蔽双绞线等。系统支持ModbusRTU、ModbusTCP、CDT、IEC60870-5-101、IEC60870-5-103、IEC60870-5-104、MQTT等通信规约。
5.2技术标准
本方案遵循的标准有:
本技术规范书提供的设备应满足以下规定、法规和行业标准:
GB/T26802.1-2011工业控制计算机系统通用规范1部分:通用要求
GB/T26806.2-2011工业控制计算机系统工业控制计算机基本平台2部分:性能评定方法
GB/T26802.5-2011工业控制计算机系统通用规范5部分:场地安全要求
GB/T26802.6-2011工业控制计算机系统通用规范6部分:验收大纲
GB/T2887-2011计算机场地通用规范
GB/T20270-2006信息安全技术网络基础安全技术要求
GB50174-2018电子信息系统机房设计规范
DL/T634.5101远动设备及系统5-101部分:传输规约基本远动任务配套标准
DL/T634.5104远动设备及系统5-104部分:传输规约采用标准传输协议子集的IEC60870-5-网络访问101
GB/T33589-2017微电网接入电力系统技术规定
GB/T36274-2018微电网能量管理系统技术规范
GB/T51341-2018微电网工程设计标准
GB/T36270-2018微电网监控系统技术规范
DL/T1864-2018型微电网监控系统技术规范
T/CEC182-2018微电网并网调度运行规范
T/CEC150-2018低压微电网并网一体化装置技术规范
T/CEC151-2018并网型交直流混合微电网运行与控制技术规范
T/CEC152-2018并网型微电网需求响应技术要求
T/CEC153-2018并网型微电网负荷管理技术导则
T/CEC182-2018微电网并网调度运行规范
T/CEC5005-2018微电网工程设计规范
NB/T10148-2019微电网1部分:微电网规划设计导则
NB/T10149-2019微电网2部分:微电网运行导则
5.3适用场合
系统可应用于城市、高速公路、工业园区、工商业区、居民区、智能建筑、海岛、无电地区可再生能源系统监控和能量管理需求。
5.4型号说明
5系统配置
5.5系统架构
本平台采用分层分布式结构进行设计,即站控层、网络层和设备层,详细拓扑结构如下:
图1典型微电网能量管理系统组网方式
6系统功能
6.1实时监测
微电网能量管理系统人机界面友好,应能够以系统一次电气图的形式直观显示各电气回路的运行状态,实时监测各回路电压、电流、功率、功率因数等电参数信息,动态监视各回路断路器、隔离开关等合、分闸状态及有关故障、告警等信号。其中,各子系统回路电参量主要有:三相电流、三相电压、总有功功率、总无功功率、总功率因数、频率和正向有功电能累计值;状态参数主要有:开关状态、断路器故障脱扣告警等。
系统应可以对分布式电源、储能系统进行发电管理,使管理人员实时掌握发电单元的出力信息、收益信息、储能荷电状态及发电单元与储能单元运行功率设置等。
系统应可以对储能系统进行状态管理,能够根据储能系统的荷电状态进行及时告警,并支持定期的电池维护。
微电网能量管理系统的监控系统界面包括系统主界面,包含微电网光伏、风电、储能、充电桩及总体负荷组成情况,包括收益信息、天气信息、节能减排信息、功率信息、电量信息、电压电流情况等。根据不同的需求,也可将充电,储能及光伏系统信息进行显示。
图2系统主界面
子界面主要包括系统主接线图、光伏信息、风电信息、储能信息、充电桩信息、通讯状况及一些统计列表等。
6.1.1光伏界面
图3光伏系统界面
本界面用来展示对光伏系统信息,主要包括逆变器直流侧、交流侧运行状态监测及报警、逆变器及电站发电量统计及分析、并网柜电力监测及发电量统计、电站发电量年有效利用小时数统计、发电收益统计、碳减排统计、辐照度/风力/环境温湿度监测、发电功率模拟及效率分析;同时对系统的总功率、电压电流及各个逆变器的运行数据进行展示。
6.1.2储能界面
图4储能系统界面
本界面主要用来展示本系统的储能装机容量、储能当前充放电量、收益、SOC变化曲线以及电量变化曲线。
图5储能系统PCS参数设置界面
本界面主要用来展示对PCS的参数进行设置,包括开关机、运行模式、功率设定以及电压、电流的限值。
图6储能系统BMS参数设置界面
本界面用来展示对BMS的参数进行设置,主要包括电芯电压、温度保护限值、电池组电压、电流、温度限值等。
图7储能系统PCS电网侧数据界面
本界面用来展示对PCS电网侧数据,主要包括相电压、电流、功率、频率、功率因数等。
图8储能系统PCS交流侧数据界面
本界面用来展示对PCS交流侧数据,主要包括相电压、电流、功率、频率、功率因数、温度值等。同时针对交流侧的异常信息进行告警。
图9储能系统PCS直流侧数据界面
本界面用来展示对PCS直流侧数据,主要包括电压、电流、功率、电量等。同时针对直流侧的异常信息进行告警。
图10储能系统PCS状态界面
本界面用来展示对PCS状态信息,主要包括通讯状态、运行状态、STS运行状态及STS故障告警等。
图11储能电池状态界面
本界面用来展示对BMS状态信息,主要包括储能电池的运行状态、系统信息、数据信息以及告警信息等,同时展示当前储能电池的SOC信息。
图12储能电池簇运行数据界面
本界面用来展示对电池簇信息,主要包括储能各模组的电芯电压与温度,并展示当前电芯的较大、较小电压、温度值及所对应的位置。
6.1.3风电界面
图13风电系统界面
本界面用来展示对风电系统信息,主要包括逆变控制一体机直流侧、交流侧运行状态监测及报警、逆变器及电站发电量统计及分析、电站发电量年有效利用小时数统计、发电收益统计、碳减排统计、风速/风力/环境温湿度监测、发电功率模拟及效率分析;同时对系统的总功率、电压电流及各个逆变器的运行数据进行展示。
6.1.4充电桩界面
图14充电桩界面
本界面用来展示对充电桩系统信息,主要包括充电桩用电总功率、交直流充电桩的功率、电量、电量费用,变化曲线、各个充电桩的运行数据等。
6.1.5视频监控界面
图15微电网视频监控界面
本界面主要展示系统所接入的视频画面,且通过不同的配置,实现预览、回放、管理与控制等。
6.2发电预测
系统应可以通过历史发电数据、实测数据、未来天气预测数据,对分布式发电进行短期、超短期发电功率预测,并展示合格率及误差分析。根据功率预测可进行人工输入或者自动生成发电计划,便于用户对该系统新能源发电的集中管控。
图16光伏预测界面
6.3策略配置
系统应可以根据发电数据、储能系统容量、负荷需求及分时电价信息,进行系统运行模式的设置及不同控制策略配置。如削峰填谷、周期计划、需量控制、有序充电、动态扩容等。
图17策略配置界面
6.4运行报表
应能查询各子系统、回路或设备指ding时间的运行参数,报表中显示电参量信息应包括:各相电流、三相电压、总功率因数、总有功功率、总无功功率、正向有功电能等。
图18运行报表
6.5实时报警
应具有实时报警功能,系统能够对各子系统中的逆变器、双向变流器的启动和关闭等遥信变位,及设备内部的保护动作或事故跳闸时应能发出告警,应能实时显示告警事件或跳闸事件,包括保护事件名称、保护动作时刻;并应能以弹窗、声音、短信和电话等形式通知相关人员。
图19实时告警
6.6历史事件查询
应能够对遥信变位,保护动作、事故跳闸,以及电压、电流、功率、功率因数、电芯温度(锂离子电池)、压力(液流电池)、光照、风速、气压越限等事件记录进行存储和管理,方便用户对系统事件和报警进行历史追溯,查询统计、事故分析。
图20历史事件查询
6.7电能质量监测
应可以对整个微电网系统的电能质量包括稳态状态和暂态状态进行持续监测,使管理人员实时掌握供电系统电能质量情况,以便及时发现和消除供电不稳定因素。
1)*供电系统主界面上应能实时显示各电能质量监测点的监测装置通信状态、各监测点的A/B/C相电压总畸变率、三相电压不平衡度百fen百和正序/负序/零序电压值、三相电流不平衡度百fen百和正序/负序/零序电流值;
2)谐波分析功能:系统应能实时显示A/B/C三相电压总谐波畸变率、A/B/C三相电流总谐波畸变率、奇次谐波电压总畸变率、奇次谐波电流总畸变率、偶次谐波电压总畸变率、偶次谐波电流总畸变率;应能以柱状图展示2-63次谐波电压含有率、2-63次谐波电压含有率、0.5~63.5次间谐波电压含有率、0.5~63.5次间谐波电流含有率;
3)电压波动与闪变:系统应能显示A/B/C三相电压波动值、A/B/C三相电压短闪变值、A/B/C三相电压长闪变值;应能提供A/B/C三相电压波动曲线、短闪变曲线和长闪变曲线;应能显示电压偏差与频率偏差;
4)功率与电能计量:系统应能显示A/B/C三相有功功率、无功功率和视*功率;应能显示三相总有功功率、总无功功率、总视*功率和总功率因素;应能提供有功负荷曲线,包括日有功负荷曲线(折线型)和年有功负荷曲线(折线型);
5)电压暂态监测:*电能质量暂态事件如电压暂升、电压暂降、短时中断发生时,系统应能产生告警,事件能以弹窗、闪烁、声音、短信、电话等形式通知相关人员;系统应能查看相应暂态事件发生前后的波形。
6)电能质量数据统计:系统应能显示1min统计整2h存储的统计数据,包括均值、较大值、较小值、95%概率值、方均根值。
7)事件记录查看功能:事件记录应包含事件名称、状态(动作或返回)、波形号、越限值、故障持续时间、事件发生的时间。
图21微电网系统电能质量界面
6.8遥控功能
应可以对整个微电网系统范围内的设备进行远程遥控操作。系统维护人员可以通过管理系统的主界面完成遥控操作,并遵循遥控预置、遥控返校、遥控执行的操作顺序,可以及时执行调度系统或站内相应的操作命令。
图22遥控功能
6.9曲线查询
应可*曲线查询界面,可以直接查看各电参量曲线,包括三相电流、三相电压、有功功率、无功功率、功率因数、SOC、SOH、充放电量变化等曲线。
图23曲线查询
6.10统计报表
具备定时抄表汇总统计功能,用户可以自由查询自系统正常运行以来任意时间段内各配电节点的用电情况,即该节点进线用电量与各分支回路消耗电量的统计分析报表。对微电网与外部系统间电能量交换进行统计分析;对系统运行的节能、收益等分析;具备对微电网供电可靠性分析,包括年停电时间、年停电次数等分析;具备对并网型微电网的并网点进行电能质量分析。
图24统计报表
6.11网络拓扑图
系统支持实时监视接入系统的各设备的通信状态,能够完整的显示整个系统网络结构;可*线诊断设备通信状态,发生网络异常时能自动*界面上显示故障设备或元件及其故障部位。
图25微电网系统拓扑界面
本界面主要展示微电网系统拓扑,包括系统的组成内容、电网连接方式、断路器、表计等信息。
6.12通信管理
可以对整个微电网系统范围内的设备通信情况进行管理、控制、数据的实时监测。系统维护人员可以通过管理系统的主程序右键打开通信管理程序,然后选择通信控制启动所有端口或某个端口,快速查看某设备的通信和数据情况。通信应支持ModbusRTU、ModbusTCP、CDT、IEC60870-5-101、IEC60870-5-103、IEC60870-5-104、MQTT等通信规约。
图26通信管理
6.13用户权限管理
应具备设置用户权限管理功能。通过用户权限管理能够防止未经授权的操作(如遥控操作,运行参数修改等)。可以定义不同级别用户的登录名、密码及操作权限,为系统运行、维护、管理提供可靠的安全保障。
图27用户权限
6.14故障录波
应可以*系统发生故障时,自动准确地记录故障前、后过程的各相关电气量的变化情况,通过对这些电气量的分析、比较,对分析处理事故、判断保护是否正确动作、提高电力系统安全运行水平有着重要作用。其中故障录波共可记录16条,每条录波可触发6段录波,每次录波可记录故障前8个周波、故障后4个周波波形,总录波时间共计46s。每个采样点录波至少包含12个模拟量、10个开关量波形。
图28故障录波
6.15事故追忆
可以自动记录事故时刻前后一段时间的所有实时扫描数据,包括开关位置、保护动作状态、遥测量等,形成事故分析的数据基础。
用户可自定义事故追忆的启动事件,当每个事件发生时,存储事故qian10个扫描周期及事故后10个扫描周期的有关点数据。启动事件和监视的数据点可由用户指ding和随意修改。
图29事故追忆
7硬件及其配套产品
序号 | 设备 | 型号 | 图片 | 说明 |
1 | 能量管理系统 | Acrel-2000MG | 内部设备的数据采集与监控,由通信管理机、工业平板电脑、串口服务器、遥信模块及相关通信辅件组成。 数据采集、上传及转发至服务器及协同控制装置 策略控制:计划曲线、需量控制、削峰填谷、备用电源等 | |
2 | 显示器 | 25.1英寸液晶显示器 | 系统软件显示载体 | |
3 | UPS电源 | UPS2000-A-2-KTTS | 为监控主机提供后备电源 | |
4 | 打印机 | HP108AA4 | 用以打印操作记录,参数修改记录、参数越限、复限,系统事故,设备故障,保护运行等记录,以召唤打印为主要方式 | |
5 | 音箱 | R19U | 播放报警事件信息 | |
6 | 工业网络交换机 | D-LINKDES-1016A16 | 提供16口百兆工业网络交换机解决了通信实时性、网络安全性、本质安全与安全防爆技术等技术问题 | |
7 | GPS时钟 | ATS1200GB | 利用gps同步卫星信号,接收1pps和串口时间信息,将本地的时钟和gps卫星上面的时间进行同步 | |
8 | 交流计量电表 | AMC96L-E4/KC | 电力参数测量(如单相或者三相的电流、电压、有功功率、无功功率、视*功率,频率、功率因数等)、复费率电能计量、 四象限电能计量、谐波分析以及电能监测和考核管理。多种外围接口功能:带有RS485/MODBUS-RTU协议:带开关量输入和继电器输出可实现断路器开关的"遜信“和“遥控”的功能 | |
9 | 直流计量电表 | PZ96L-DE | 可测量直流系统中的电压、电流、功率、正向与反向电能。可带RS485通讯接口、模拟量数据转换、开关量输入/输出等功能 | |
10 | 电能质量监测 | APView500 | 实时监测电压偏差、频率俯差、三相电压不平衡、电压波动和闪变、诺波等电能质量,记录各类电能质量事件,定位扰动源。 | |
11 | 防孤岛装置 | AM5SE-IS | 防孤岛保护装置,当外部电网停电后断开和电网连接 | |
12 | 箱变测控装置 | AM6-PWC | 置针对光伏、风能、储能升压变不同要求研发的集保护,测控,通讯一体化装置,具备保护、通信管理机功能、环网交换机功能的测控装置 | |
13 | 通信管理机 | ANet-2E851 | 能够根据不同的采集规的进行水表、气表、电表、微机保护等设备终端的数据果集汇总: 提供规约转换、透明转发、数据加密压缩、数据转换、边缘计算等多项功能:实时多任务并行处理数据采集和数据转发,可多链路上送平台据: | |
14 | 串口服务器 | Aport | 功能:转换“辅助系统"的状态数据,反馈到能量管理系统中。 1)空调的开关,调温,及完quan断电(二次开关实现) 2)上传配电柜各个空开信号 3)上传UPS内部电量信息等 4)接入电表、BSMU等设备 | |
15 | 遥信模块 | ARTU-K16 | 1)反馈各个设备状态,将相关数据到串口服务器: 读消防VO信号,并转发给到上层(关机、事件上报等) 2)采集水浸传感器信息,并转发3)给到上层(水浸信号事件上报) 4)读取门禁程传感器信息,并转发 |
8结语
光伏发电站具有能量波动大、发电间歇性和随机性的特点,因此*发电并网环节存*较多的风险。为了提高光伏电站并网平稳性和可靠性,采用蓄电池和电容器相结合的方式更好地发挥出混合储能系统*能量管理中的协同优势,对于优化蓄电池充放电,延长电池使用寿命创建了积*条件。基于低通滤波原理对混合储能系统设计协调控制策略,便于更好地保护储能设备,实现平稳充放电目标。
参考文献:
[1]白建波.太阳能光伏系统建模、仿真与优化[M].北京:电子工业出版社,2014.
[2]刘胜永,张兴.新能源分布式发电系统储能电池综述[J].电源技术,2012,36(4):601-605.
[3]陈瑞.光伏储能发电系统及能量管理策略研究.
[4]安科瑞企业微电网设计与应用设计,2022,05版.
作者介绍:
任运业,男,现任职于安科瑞电气股份有限公司。